
Nexus DSC USER MANUAL

User Manual for Nexus DSC

Version 2.5
Firmware version 1.x.x
Last revised on March 10th, 2018
Printed in Australia

Copyright

Copyright © 2014-2018, Astro Devices. All rights reserved.

No part of this manual may be reproduced or transmitted in any form for any purpose other than the purchaser's personal use, without the express written permission of Astro Devices.

Astro Devices reserves the right to make changes and improvements to its product without providing a notice.

Precautions and Safety

Electricity

Nexus DSC contains a rechargeable Lithium-ion battery. Lithium-ion batteries can explode or cause a fire if they are used incorrectly or if they are defective. Therefore, you are recommended to read the following instructions very carefully:

NEVER leave Nexus DSC where it is subjected to extremes in temperatures. This includes low levels as well as high.

DO NOT leave Nexus DSC where it is in direct sunlight or in an enclosed space, such as a car, that can become extremely hot very rapidly.

Do not drop or subject the Nexus DSC to impact.

Use only approved power adapter to charge your Nexus DSC.

Do not handle power plug and adapter with wet hands. Electrical shock may result. Immediately power off the product and unplug the DC adapter and/or batteries if smoke or odours emit from the product. Immediately power off the product and unplug the DC adapter if water or other liquids are present.

Product

Keep it away from harsh environments including humid, dusty, and smoky areas.

Do not use excessive force on the connectors.

Do not attempt to disassemble the device without prior consultation with Astro Devices.

Do not place heavy objects on the product. Damage to your products may result from improper use.

Technical Support

Astro Devices 198 The Esplanade, SYLVANIA, NSW 2224 AUSTRALIA

ABN 75 270 616 917

E-Mail: support@astrodevices.com
Website: http://www.astrodevices.com

Thank You!

Thank you for purchasing Nexus DSC digital setting circles telescope computer. We hope you enjoy it!

You have purchased one of the most advanced Digital Setting Circles computers. It will allow you to located celestial objects quickly and easily. Nexus DSC has a huge database of objects – planets, galaxies, star clusters, globular clusters, nebulae and others. It also provides extensive descriptions for those objects – magnitudes, sizes, common names, alternative designators, surface brightness, separations for double stars, spectral class, galaxy morphology. It is all available at a press of a button!

This user manual will get you started and help you make the most of your Nexus DSC.

Nexus DSC User Manual

~ This page intentionally left blank ~

TABLE of CONTENTS

MADLE COMPENIES	4
TABLE of CONTENTS	1
Introduction	2
Product Features	2
Technical specifications	2
Digital setting circles specifications	
Package Content	
Introduction	2
Unpacking	
Controls	
Charge the battery	
User interface	
Main menu	
Status Bar	
KeypadInitial Setup	
•	
Setting the time and date	
Connecting to your telescope	
Telescope Settings	
Two star alignment	
Alignment object screen	
Pointing accuracy	
Locating an object	
Improving pointing accuracy	8
Nexus DSC's menus	9
Settings	9
Telescope	9
Other Parameters	10
Communications	10
Time and Date	10
WiFi	
Display/Keypad	11
Align	
Altitude Reference	
First Object Alignment	
Second Object Alignment	
Alignment Status	
Mpoint Start	
Mpoint Parameters	
Mpoint Edit Points	
Mpoint Analyse	15
Equatorial Timer	
Find	
From Catalogues	
From Observation List	
Object at RA/Dec	
From Planetarium	
Identify	
Tour	
Test	
Encoders	
WiFi	
USB	
Serial	

Utilities	23
Update Catalogues from microSD	23
Info	24
About Nexus DSC	24
Time	24
Battery	24
GPS	
Advanced Topics	25
Daylight Testing	
Firmware Update	25
Apendix	26
Ports Pinouts	26
Serial Port	
Encoders Port	
List of Compatible Planetarium Software	27
FREQUENTLY ASKED QUESTIONS (FAQ)	
Troubleshooting	27
Warranty	29
Technical Support	2 9
A A	

Introduction

Nexus DSC is a digital setting circles computer with optional WiFi interface for your telescope. It works with most popular telescopes — on equatorial or Alt-Azimuth mounts.

Nexus DSC is a very sophisticated device for locating celestial object in the sky. Only two rotary encoders are required to be fitted to your telescope in order to be able to locate celestial object with Nexus DSC.

Product Features

Below is a short outline of main features of your Nexus DSC.

Technical specifications

- CPU 32 bit, MIPS 4K running at 80MHz
- Memory 16MB internal FLASH
- External memory up to 64GB on micro SD card
- 3.12" Red OLED screen (256x64 pixels) with 256 levels of brightness
- Full numeric keypad with adjustable back light
- Real time clock with thermal compensation
- Built-in GPS receiver with support for GPS and GLONASS
- Built-in 5000mAh rechargeable Lithium battery
- Operating temperature range from -20 C to +50 C (-5 F to +120 F)
- Humidity 10%-90% non-condensing
- · Optional WiFi interface
- FCC / CE/ IC certified 2.4GHz IEEE 802.11b/g transceiver
 - Supports Access Point and infrastructure WiFi networks
 - o Secure Wi-Fi authentication schemes
 - Class I WiFi device (up to 150 meters)
 - Uses 2412 ~ 2484MHz Unlicensed ISM band (channels 1-14)
 - Output power 0.08W
- One RS232 port
- One USB port
- Upgradeable firmware and catalogues (firmware is upgraded using a USB memory stick)
- Can be charged/powered by an external power source of 5-16V DC; can be charged from a cigarette lighter socket in a car
- Reverse polarity protection
- RoHS compliant
- Size: 140 x 120 x 30mm (5.5" x 4.7" x 1.2")
- Weight: 260g (9oz)

Digital setting circles specifications

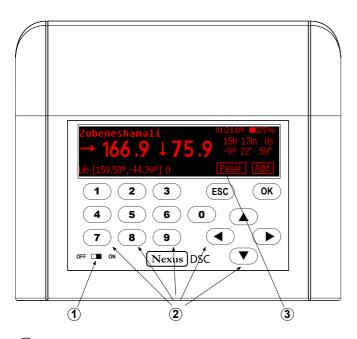
- Intuitive graphical user interface
- Supports Alt-Az mounts, Equatorial Mounts, Equatorial Platforms

- Supports a two star alignment
- Filter objects by magnitude, constellation and object type
- Displayed angular resolution is 0.01 of a degree
- Internal FLASH memory contains a database of more than 90000 objects:
 - Named stars
 - Bright stars, Flamsteed, Bayer, Asterisms
 - o Planets, Sun, Moon
 - Common named objects
 - o Full catalogues of popular catalogues.
- Around 2.3 million objects are located on optional microSD card
- Displays object's information: magnitude, size, surface brightness, spectral class, double star separations, galaxies morphology, alternative names, rise time, set time, transit time etc.
- Identify function; can also display up to 128 nearby objects
- Tour modes: within a radius and within a constellation
- Supports a multi point telescope pointing analysis system for telescope pointing corrections
- Supports rotary encoders with up to 999999 steps per revolution
- Shows internal battery status remaining capacity, current power consumption and percentage of charge remaining
- Can be interfaced to a tablet/smartphone/computer using a standard RS232 interface or optional WiFi interface
- Internal real-time clock can be synchronised with GPS time automatically
- Time display of local time, UTC and local sidereal time
- Supports LX200 emulation
- Supports ServoCAT, SiTech and SkyTracker motor controllers

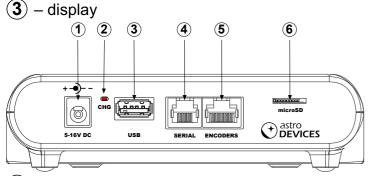
Package Content

The package contains:

- Nexus DSC
- User manual
- DC 2.1mm to cigarette lighter power cable
- USB to DC 2.1mm cable (for charging only)
- Optional serial cable
- Optional power adapter 6V, 3A, 90-264V
 AC


Introduction

Unpacking


Nexus DSC has a protective film covering the front panel. Please peel it off to be able to see the display clearly.

Controls

All controls are situated on front panel of Nexus DSC:

- (1) power switch
- 2 keypad

- 1 external power connector (DC 2.1mm)
- 2 charging status LED
- (3) USB connector
- 4 Serial (RS232) port
- **5** Encoders port
- 6 Micro SD socket
- 1 is used to charge the battery; can be connected to a power adapter or to a cigarette lighter socket (using the supplied cable)
- (2) indicates the charging status of the battery

$\overline{}$	
Blinking type	Description
Solid ON	The internal battery charging is in progress
OFF	The internal battery has been fully charged
Flashing	Flashing LED is indicating an error (power source is not supplying sufficient voltage and or current)

3 The USB port acts as a USB host. It cannot be used to connect Nexus DSC to a computer directly.

The USB port on Nexus DSC is used for:

- Firmware updates
- To interface Nexus DSC to ServoCAT
- To interface Nexus DSC to SiTech motor controller
- **4** Serial port is a standard RS232 port, 6P6C RJ connector. It is used for the following purposes:
- To connect Nexus DSC to a computer
- To connect Nexus DSC to ServoCAT
- To connect Nexus DSC to SiTech controller
- **5** Encoder port is used to connect encoders using an 8P8C RJ connector
- (6) microSD socket is push-in push-out type

Charge the battery

The battery may not be fully charged at first. It is advised to fully charge the battery.

Please use either the provided power adapter or one of the recommended power adapters to charge the battery.

It is also possible to use the supplied USB to DC 2.1mm cable to charge the battery from a power adapter with a USB socket. The power adapter should be capable of supplying at least 1.5A at 5V otherwise it will take much longer to fully charge the battery in Nexus DSC.

Connect the power adapter to Nexus DSC and plug the adapter into a power point.

It is recommended to keep Nexus DSC turned off during charging to reduce charging time.

WARNING:

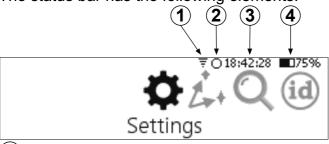
Do not connect Nexus DSC to an external power source that is not within the specified voltage range. Nexus DSC has internal over-current protection but it is safer to use it with the power source specified.

The internal Lithium battery can only be charged at a temperature range of 0 °C to +30 °C (32 °F to 86 °F)

User interface

Main menu

The main screen consists of a status bar, horizontal menu with icons and a text description of the currently selected menu item:


(2) – Main menu

3 - Menu description

Status Bar

The status bar shows basic information about battery state, current time, GPS receiver status and WiFi.

The status bar has the following elements:

- 1 WiFi status is only shown if the WiFi is enabled
- ② GPS fix status the dot in the centre is flashing until the GPS receiver acquires the current location
- (3) Current time in 24 hour format
- (4) Battery charge level in %

Keypad

Nexus DSC has a full numeric (0-9) keypad with directional keys (\P , \blacktriangleright , \P), \P 0K and \P 1C to allow an easy method of control.

The keys have the following functions:

- **0** to **9** keys are used to specify a numeric information to Nexus DSC
- and be keys on the keypad move between previous and next menu item, they are also used to move between control fields (edit value, list, check box, on-screen buttons) in a dialogue screen. The key also acts as a backspace when editing a value in edit fields.
- The OK key activates the selected menu item (on-screen button press, accepts a selection from a list, finish editing a text or numeric value).
- The Esc key goes back to the previous menulevel/screen.

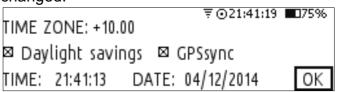
Initial Setup

This section describes how to setup Nexus DSC to start locating celestial objects. The following sections will describe all features of Nexus DSC in detail.

In order to be able to use Nexus DSC for locating celestial object it is necessary to set a few parameters first:

- Time and date
- Mount Type
- Encoders' resolution

Setting the time and date


Please select 'Settings' from the main menu:

Then select 'Time and Date':

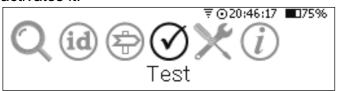
It will show the current time and date that can be changed:

If all parameters are set correctly then pressing the ESC key can be used to avoid changing any parameter.

If the time zone, time and date need to be changed then \blacktriangleleft and \blacktriangleright keys can be used to select the parameter that needs to be adjusted. \blacktriangle and \blacktriangledown keys are used to change the value.

Setting the time and date is only required if time synchronisation with GPS is disabled. However the time zone and date needs to be set for Nexus DSC to show the local time correctly.

It usually takes 30 to 60 seconds for the GPS receiver to get a fix on the location (under open sky conditions). Nexus DSC will update the internal real-time clock with the time received by the GPS receiver at this time. The GPS receiver will automatically be switched


into a power saving mode after it acquired the location to conserve the battery power.

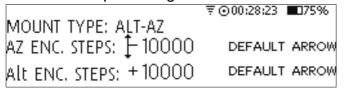
Connecting to your telescope

Nexus DSC requires only encoders connected to operate. Please plug the encoder cable into *Encoders* port on Nexus DSC.

For operating Nexus DSC with a ServoCAT or SiTech controller the serial port needs to be connected to a serial port on ServoCAT or SiTech controller.

To make sure that encoders are functioning correctly Nexus DSC has a test mode to test the encoders. Selecting *Test* from the main menu activates it:

Then select Encoders:


will show the current angles and encoder steps:

In order for Nexus DSC to function correctly it is required to adjust the encoder steps to make sure that:

- the RA/AZ current position in degrees is increasing when rotating the telescope clockwise around RA/AZ axis
- the Dec/Alt current position in degrees is increasing when moving the telescope up in declination/altitude

If either of those values is decreasing then set the encoder steps' sign for that axis to a negative sign in the Telescope Settings:

Telescope Settings

Nexus DSC needs the mount type and encoder steps to be set correctly before it can be used to locate celestial object precisely.

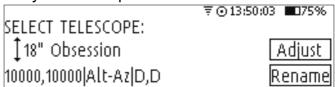
The mount type and encoder steps are set in the Telescope Settings that can be accessed by selecting 'Setting' from the main menu:

then by selecting 'Telescope':

Then you need to select the telescope:


▼ ⊙ 13:48:05 ■ □75%

SELECT TELESCOPE:


\$\frac{1}{10000,10000|Alt-Az|D,D}\$

Rename

Nexus DSC allows to have up to five different telescope configurations. ▲ and ▼ keys are used to switch between telescope configurations. You can also rename **TELESCOPE 1** to your telescope's name. You just need to activate the *Rename* button by using ▶ and then press the OK key. A text cursor now appears under the name:

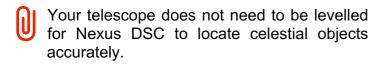
You will now be able to edit the name and change it to your telescope name:

Now you need to set other parameters for your telescope:

	₹⊙00:39:16 ■175%
MOUNT TYPE:[ALT-AZ	
Mount type:[alt-az az enc. steps: +10000	DEFAULT ARROW
Alt ENC. STEPS: +10000	DEFAULT ARROW

where the mount type can be selected by using and keys. The encoder steps are set to 10000 steps by default and should be set to the number of steps corresponding to the number of steps of the encoder installed on your telescope. Encoder steps can be set by using the numeric keys on the keypad. Please change the sign in front of encoder steps for either one or both encoders if required as described previously:

♥ © 00:28:23 ■ 175%


MOUNT TYPE: ALT-AZ

AZ ENC. STEPS: \$\big| 10000 \quad default arrow

Alt enc. steps: \$\big| 10000 \quad default arrow

Two star alignment

Nexus DSC needs to be aligned on two stars before it can locate celestial objects.

The two star alignment is performed in three steps. Please go to the Align menu:

Then select Altitude Reference:

Adjust the altitude reference angle if required:

₹ ⊙21:43:04 ■075%

Altitude angle: 90°

Telescope coordinates:358.74°,-88.20°

OK

Now move the telescope into position depending on the mount type (for 90 degrees reference): Telescopes on Alt-Azimuth mount should be positioned vertically:

The same rule applies to telescopes installed on equatorial platforms. Please note that the telescope should be at 90 degrees to the ground board, not the ground.

For equatorial mounts 0 degrees altitude reference is more convenient.

Telescopes on an Equatorial Fork for a 0 degrees altitude reference then be positioned as below:

The telescope does not have to be positioned exactly at the angle specified, but it should be within $\pm 10^{\circ}$.

The following information applies only to German Equatorial mounts.

It is worth noting that the 90° altitude reference for the German Equatorial mode means that the telescope is pointing at Polaris while positioned in the top position (i.e. the counterweight is at the bottom). Please see the *Test* section of this manual to find how the encoder steps should be setup for a German Equatorial mount.

Northern hemisphere:

 For the 0° Altitude reference the telescope should be positioned horizontally pointing west if aligning on stars in the western part of the sky and pointing east if aligning on stars in the eastern part of the sky.

Southern hemisphere:

 For the 0° Altitude reference the telescope should be positioned horizontally pointing east if aligning on stars in the eastern part of the sky and pointing east if aligning on stars in the eastern part of the sky.

Nexus DSC will automatically switch the screen to the selection of first alignment object:

	_	•
ALIGN I		₹ ⊙ 21:43:26 ■□75%
CAT Named Stars		AZ:218.31° 16h 6'18"
OBJ: Acrab		Alt:-26.00° -19°50'43"
info:β Sco		[0.00°,90.00°] OK

While Nexus DSC can be aligned on any object in its database it is best to use objects form either **Named Stars** catalogue or **Bright Stars** catalogue.

It is time to select the first alignment object – by pressing \blacktriangleleft to go to the object selection list and then using \blacktriangle and \blacktriangledown to change to another star:

ALIGN I	₹ ⊙21:43:35 ■□75%
CAT: Named Stars	AZ:117.67° 2h58'50"
OBJ[Acamar	Alt:73.35° -40°14'44"
info:θ Eri	[0.00°,90.00°] OK

Acamar was selected as it is well above 30 degrees. Now the telescope should be pointed at **Acamar** using an eyepiece with a reticle/crosshair or a very high magnification eyepiece. Press the button once the telescope is pointing at the star.

Nexus DSC will now switch to the selection of a second alignment object:

,	
ALIGN II	₹ ⊙21:45:51 ■□75%
CAT: Named Stars	AZ:5.35° 1h52'12"
OBJ <mark>‡</mark> Baten Kaitos	Alt:66.18° -10°15'42"
info:ζ Cet	[0.43°,73.58°] OK

Please follow the procedure described above to change the selection of the second alignment object if necessary.

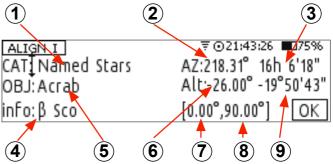
Press the OK button once the star is in the centre of the eyepiece.

Now Nexus DSC will show the alignment error:

₹ ⊙ 21:46:29 ■075%

Alignment: Successful

Alignment error: 0.02


Now you can press either the OK key or the ESC key to go to the previous menu.

You can go back to align on first or second object at any time in case the alignment error is too big.

Alignment object screen

Alignment object screen presents the following information:

where:

- (1) Currently catalogue
- (2) Currently selected object's azimuth
- (3) Currently selected object's RA
- (4) Object's information
- (5) Currently selected object
- (6) Currently selected object's altitude
- (7) Telescope's AZ/RA
- (8) Telescope's Altitude/Declination
- (9) Currently selected object's declination

Pointing accuracy

Pointing accuracy depends on a number of factors:

- Quality of the telescope mount
- · Choice of alignment stars
- Accuracy in pointing on alignment objects

To achieve the best pointing accuracy with an Altitude-Azimuth mount it is recommended that:

- The alignment stars chosen should always be at 30 to 80 degrees in altitude and separated by at least 70 degrees in azimuth.
- Alignment stars should ideally have at least a few degrees separation in altitude
- Polaris can be used as one of the alignment stars

To achieve the best pointing accuracy on an Equatorial mount it is recommended that:

- Polaris should never be used as one of the alignment stars
- Alignment stars with a declination greater than 80 degrees should be avoided
- The alignment stars chosen should always be at 30 to 80 degrees in altitude and separated by at least 70 degrees in RA.

Locating an object

Once the two star alignment is performed Nexus DSC can locate celestial object in the sky.

The following steps describe a basic method of location of celestial objects.

Go to the top menu and select *Find*:

Select From Catalogues:

Select a catalogue by using the (▲) and (▼) keys:

₹ ⊙ 23:40:16 ■ 175% Catalogue: NGC Filter: Disable

And just leave the *Filter* as *Disable* for now:

₹ ⊙23:40:26 ■075% Catalogue: NGC Filter: TDisable

The display will show the last selected object:

₹ ⊙23:40:49 ■075% NGC104 0h 24m 5s ← 107 .8 ↓ 11.2 GLOBULAR IN TUCANA

Suppose we would like to find NGC55. Just press the (5) key and the display will prompt to continue typing the object number:

₹ ⊙ 23:40:57 ■ 175% Specify the object: NGC 5

Now press the (5) key again and then press

OK): ₹ ⊙ 23:41:02 ■ 275% Specify the object: NGC 55

Nexus DSC will now show where to move the telescope to aim at NGC55:

It shows that the telescope needs to be moved down by 6.9 degrees and counter clockwise by 59.7 degrees. As you start moving the telescope the numbers will start updating. Continue to move until both numbers are close to 0s:

If you look through the eyepiece then you will see NGC55 there now.

To display additional information about the object just press ◀ or ▶ key:

₹ ⊙ 23:42:22 ■175% NGC55: Galaxy in Sculptor, also known as ESO 293- G 050 size:32.4'x5.6' magnitude: 8.8 SB:

Pressing , b or swill take you back to the previous screen.

If a description for the object fits on one screen then no scroll bar is displayed on the right.

Improving pointing accuracy

Every telescope has some kind of imperfections. Nexus DSC supports two methods of improving pointing accuracy that compensate for those imperfections: sync objects and Mpoint. Mpoint is described later in this manual.

Sync objects are used to improve the pointing accuracy when a telescope is pointing in the proximity of a synced object. Nexus DSC limits the number of sync objects to 128. The size of the area is limited to 10° radius. If there are more than one sync objects in the area then corrections from the closest sync objects are used.

Once the two star alignment is performed Nexus DSC will enable an additional mode to allow adding sync objects. Use (◀) to activate it while an object from one of the catalogues is selected:

To sync to the object (M79 in this example) and make sure it is precisely in the centre of the field of view and of any of offsets are are not exactly 0 then press the OK key to add it to the sync objects list. Once you press the key you will see that offsets became 0s:

Nexus DSC's menus

Settings

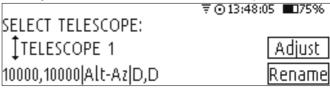
Nexus DSC has a number of parameters that can be adjusted. All of the adjustable parameters are stored in non-volatile memory and will be used every time you turn Nexus DSC on.

Please note that all settings can be reset back to their default values by turning Nexus DSC on while holding the ESC key. You will be asked to confirm the reset to the factory settings.

Telescope

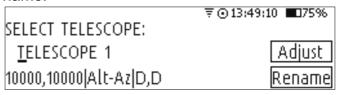
Nexus DSC needs the mount type and encoder steps to be set correctly before it can be used to locate celestial object precisely.

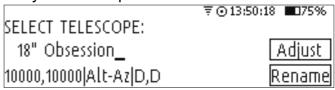
The mount type and encoder steps are set in the Telescope Settings that can be accessed by selecting **Setting** from the main menu:


then by selecting **Telescope**:

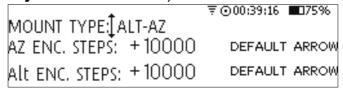
Nexus DSC supports up to five different telescope configurations. Each telescope configuration has its own mount type, encoder steps, altitude Nexus DSC User Manual

reference angle value. Having different telescope configurations allows you to use Nexus DSC with different telescopes without spending time on setting all parameters.


Then you need to select the telescope:


▲ and ▼ keys are used to switch between telescope configurations.

To select a telescope configuration without changing any parameters just press the key.


You can also rename **TELESCOPE 1** to your telescope name. You just need to activate the **Rename** button by using and then press the low key. A text cursor now appears under the name:

You will now be able to edit the name and change it to your telescope name:

Now you need to set other parameters for your telescope (by pressing the OK key when the **Adjust** button is active):

where the mount type can be selected by using and keys. The encoder steps are set to 10000 steps by default and should be set to the number of steps corresponding to the number of steps installed on your telescope. Encoder steps can be set by using the numeric keys on the keypad. Change the sign to negative if required as described previously: ₹ @00;28;23 **■**075% MOUNT TYPE: ALT-AZ AZ ENC. STEPS: \$\frac{1}{2} 10000 \quad default arrow Alt ENC. STEPS: \$\frac{1}{2} 10000 \quad default arrow

Nexus DSC has a provision for changing the default direction of the arrows indicating where to move the telescope. It can be changed by selecting **REVERSE ARROW**:

Other Parameters

The Other Parameters menu is to set other settings that do not fall under a specific category for your Nexus DSC.

Altitude limits can be specified that are used for:

- Limiting a range of objects' search in **Tour** modes
- Limiting slewing the telescope when Nexus DSC is used with a motor controller (ServoCAT, SiTech, SkyTracker)

Sounds are played during the alignment. Pressing the *Catalogues in Find* button will allow you to select which catalogues to show in the *Find* mode. *Force in Find/Align* mode will force showing objects that are within the altitude limits when scrolling through the objects.


Communications

Communications menu allows to set parameters for serial port and USB port. Please select **Communications** from the **Settings** menu:

USE

USB port settings are set by selecting the **USB** menu:

Nexus DSC supports interfacing to ServoCAT through the USB port for performing GOTO commands from a planetarium application. For third generation of ServoCAT you will need a USB cable supplied with ServoCAT, for first and second generation of ServoCAT a USB to serial adapter is required – the adapter must be based either on FT232 chipset, on CP210x chipset or on PL2303 chipset. Please contact Astro Devices for a list of compatible USB to serial adapters.

For operating Nexus DSC with ServoCAT it is necessary to set a few parameters:

- Communication protocol set to ServoCAT
- Baud rate set to 9600
- Stop bits set to 1
- Data bits set to 8
- Parity set to None

Serial

Serial port parameters are set by selecting the **Serial** menu:

Now the serial port parameters can be adjusted as required:

- Communication protocol
- Baud rate
- Stop bits
- Data bits
- Parity

Time and Date

Nexus DSC has a built-in battery backed real time clock with temperature compensation.

To set the time you need to select *Time & Date*:

Nexus DSC User Manual

then the time settings can be adjusted:

▼ ⊙ 21:41:19 ■ □75%

TIME ZONE: +10.00

☑ Daylight savings ☑ GPSsync

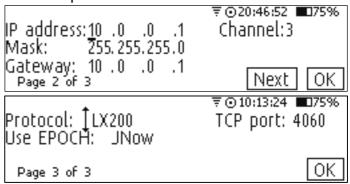
TIME: 21:41:13 DATE: 04/12/2014 OK

The easiest method of setting the time and date parameters is to set TIME ZONE, Daylight Savings, enable GPSsync and then step outside to allow the GPS receiver to get a fix on the location and the time and date will be set automatically.

WiFi

Nexus DSC's optional WiFi interface can be disabled, set to *Access Point* mode (when Nexus DSC acts as a WiFi access point thus allowing other devices to joins its network) or it can be set to *Infrastructure* mode (for connecting to an existing WiFi network). To change various WiFi parameters can be done by choosing *Settings*->*WiFi*:

The WiFi is disabled by default.


The easiest way of using Nexus DSC with a smartphone/tablet/laptop is to switch the WiFi to *Access Point* mode:

If default parameters are to be used then after changing *WiFi Mode* to *Access Point* just press the OK key until *Next* button on the screen is flashing

then press \blacktriangleright key to activate OK button on the screen and press the OK key.

Otherwise two other pages allow changing all available parameters:

The **Use EPOCH** is set to **JNow** by default as most planetarium applications use the current epoch for the coordinates. Some planetarium applications can only accept **J2000**.

Please note that this password needs to be at least 8 characters long. If *Password* is set to *Password* (case sensitive) then Nexus DSC will create an open WiFi network.

Display/Keypad

Nexus DSC allows you to adjust the brightness of display and of the keys' backlight. The display brightness has a range from 0 to 255 (255 is the maximum) while the back light has a range from 0 to 100 (0 will turn the back light off while 100 is the maximum level).

To adjust the levels of brightness is done through **Display/Keypad**:

which bring up the controls:

Use ◀ and ▶ keys to switch between *Display* and *Keypad* and ▲ and ▼ keys to adjust the levels.

Set After is used to set the time period after which the selected display brightness will be set. For example, if the display brightness level was left at a low level and Nexus DSC was turned ON during daytime then it would be very difficult to see the text on the screen. The delayed setting of the display brightness will allow you to set the brightness to the desired level while operating the device.

Sleep controls when Nexus DSC will turn the display OFF if no key has been pressed for the selected time period. Nexus DSC is fully operational when the display is turned OFF. Pressing any key will turn the display back ON. Precision controls the number of digits displayed after the decimal point for showing the offset to the selected object. It is saved for each telescope. Once you have adjusted the brightness levels to the ones you desire move to OK button on the screen and press the OK key to save them.

Align

Align menu contains all functions handling the telescope alignment:

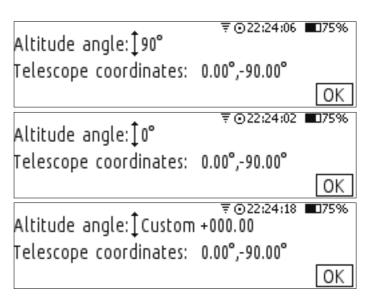
- Altitude reference alignment
- First object alignment
- Second object alignment
- · Alignment status
- Mpoint start
- Mpoint parameters
- Mpoint analyse
- Equatorial platform timer

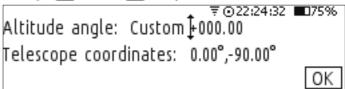
All alignment functions are accessed by selecting *Align* from the top level menu:

Altitude Reference

The first step of the telescope alignment is to set the initial altitude reference.

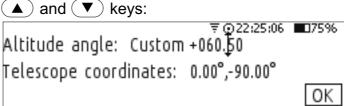
It is done by selecting **Altitude Reference** from the **Align** menu:


Now you can select the initial altitude reference angle:


The are three choices with the angle:

• 90°

- o°
- Custom



The custom angle can be set with a precision of 1/100 of a degree. Once *Custom* is selected you can change the integer part (from -180° to +180°) using and keys:

And then you can set the fractional part using

And ▼ keys:

First Object Alignment

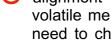
You can choose first alignment object by selecting *First object alignment* from the *Align* menu:

Use ◀ and ▶ keys to activate a selection list for the catalogue (*CAT*) and a selection list for objects (*OBJ*). Use ▲ and ▼ keys to change the selection.

Aim the telescope at the selected object using an eyepiece with a reticle or a high magnification eyepiece and once the object is in the centre press (OK) key:

ALIGN I	₹⊙21:43:35 ■□75%
CAT: Named Stars	AZ:117.67° 2h58'50"
OBJ[Acamar	Alt:73.35° -40°14'44"
info:θ Eri	[0.00°,90.00°] OK

Nexus DSC will automatically switch to the Second object alignment.


Second Object Alignment

You can choose first alignment object by selecting Second object alignment from the Align menu if Nexus DSC did not activate it automatically - for example, if you decided that the telescope was not aimed at the second alignment object precisely.

Please repeat the procedure describe above for the second alignment:

and decentarisming	
ALIGN II	₹ ⊙21:45:51 ■075%
CAT: Named Stars	AZ:5.35° 1h52'12"
OBJ[Baten Kaitos	Alt:66.18° -10°15'42"
info:ζ Cet	[0.43°,73.58°] OK

Nexus DSC will store your selection of alignment catalogues and objects in nonvolatile memory which means that you don't need to change the selection next time you observe.

Alignment Status

The alignment status shows whether the two star alignment was successful (it will show the error if unsuccessful) and how accurate the alignment was achieved (in degrees). Any value in range -0.0 to 0.5 is good for visual observing – the smaller the value the better.

₹ ⊙21:46:29 ■□75% Alignment: Successful Alignment error: 0.02 0K |

Mpoint Start

Every telescope has some kind of imperfections:

- Fabrication errors
- Mechanical and optical axes not being perpendicular
- Flexure of telescope mechanical structure Nexus DSC can compensate for most of systematic errors.

Mpoint calculates a mathematical model of your telescope and performs pointing corrections in real time.

Using Mpoint telescope pointing correction involves:

- 1. Performing the initial two star alignment
- 2. Starting an Mpoint run of calibration objects (from 4 to 128 objects)
- 3. Analysing the results
- 4. Enabling the model to be used for pointing corrections

The first step has been described earlier. The second steps starts with selecting Mpoint Start from the *Align* menu:

Then you can select a catalogue of objects to be used as calibration objects:

It is always better to use either Named Stars catalogue or Bright Stars catalogue for calibration objects as it is much easier to put stars in centre of eyepiece. It is best to use an eyepiece with a reticle for the calibration run to achieve the precise pointing of the telescope at calibration objects. It is also advisable to use stars that are currently at 30° to 80° in altitude (the current altitude is displayed in square brackets at the bottom of the screen).

Once you selected a catalogue you can start the calibration run:

The screen shows you where to move the telescope to Ankaa in this example. Move move the telescope and put the star in the centre of your eyepiece as precise as possible:

Now press the OK key. You will see that the counter at the bottom of the screen (after the closing square bracket) has been incremented and becomes 3:

Ankaa ← 0.00 ↓ 0.00 ° 175% Objects:3 • O.00 ° 175% Reset • Add

Now continue the calibration run until you collect enough calibration stars:

▼ ⊙01:16:29 ■175% Algieba ← 0.01 ↑ 0.00 10h 19m 59s +19° 50' 27" Objects:4 Reset Add

Calibration stars are automatically added to sync objects list and Nexus DSC will apply the correction to pointing immediately and the offsets will become equal zero;

It is always good to have the calibration stars spread across the whole sky for achieving the best results.

Adding calibration stars in Find/Identify/Tour modes

It is also possible to add calibration stars in Find/Identify/Tour modes. The two star alignment needs to be performed before adding calibration stars for MPoint analysis.

For example, in *Find* mode when Acrux is shown and the telescope has it in the centre of the field of view:

Acrux

← 0.04 ↑ 0.08 12h 26m 36s

STAR IN CRUX

Pressing the key will display the following screen:

₹©01:18:37 ■075% Catalogue: Named Stars Objects:Acrux Objects:4 Reset ADD SYNC/MPOINT

The current object will be added for the analysis:

The current object will be added for the analysis.

₹ © 01:18:44 ■ 075%

Catalogue: Named Stars

Objects:Acrux

Objects:5 Reset ADD SYNC/MPOINT

The same procedure is used in Identify and Tour modes. The screen will show:

Alpha, α Cru

→ 0.02 ↑ 0.08 12h 26m 37s

DOUBLE STAR IN CRUX 2 OF 6

Pressing the key will display the following screen:

₹⊙01:19:41 ■175% Catalogue: Bayer Stars Objects:Alpha, α Cru Objects:5 Reset ADD SYNC/MPOINT

Mpoint Parameters

Once you performed the calibration run on a good number of stars (>7) you can select which errors you would like to account for. There is a mathematical formula associated with each error and it is referred to as a term. You can select which terms to use for your telescope model by selecting *Mpoint Parameters* from the *Align* menu:

Use ◀ and ▶ keys to choose a check box for a term. Use ▲ and ▼ keys to enable/disable the term.

The bottom left corner of the screen show a page number of terms. There are currently 19 terms spread over 4 pages.

▼ ⊙21:49:56 ■□75%

□ RA Offset □ RA Scale
□ Dec Scale
□ Tube Square □ Mount Square
□ Page 1 of 4 □ Next

Activate the *Next* button and press OK key to go to the next page:

▼ ⊙21:50:03 ■075%

☑NPAE □PAxis NS
□PAxis EW □Tube Flexure
□Fork Flexure □DEC Axis Flexure
Page 2 of 4 Next

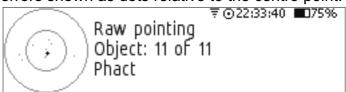
▼ ⊙21:50:10 ■075%

□ RA Sine
□ Dec Sine
□ Dec Cosine
□ Mount Square Sine
□ PAxis NS Sine
□ Page 3 of 4

⊠PAxis NS Cosine	₹ ⊙ 21:50:18 ■□75%
Page 4 of 4	Next

	1	T
Term	Mount Type	Description
RA Offset	All	IA (AZ offset for AltAz)
RA Scale	All	Usually equal 1
Dec Offset	All	IE (Alt offset for AltAz)
Dec Scale	All	Usually equal 1
Tube	AltAz	or Collimation error:
Square		for Alt/Azimuth
		mounts it is non
		perpendicularity
		between pointing
		direction and altitude
		axis.
Mount	EQ	Non-perpendicular
Square		error - in equatorial
		mount if the RA and
		Declination axes are
		not perpendicular.
NPAE	AltAz	non perpendicular
		axis error
PAxis NS	AltAz	Azimuth Axis
		Misalignment North-
		South (AN)
PAxis EW	AltAz	Azimuth Axis
		Misalignment East-
		West (AW)
Tube	AltAz	Tube Flexure (TF)
Flexure	, <u></u>	
Fork Flexure	EQ	For fork mounts - the
TOTAL TOXALO		flexure in fork arms
DEC Axis	EQ	Declination Axis
Flexure	_ ~	flexure (DAF)
RA Sine	All	AZ Sine for AltAz
1 i/ Ciric	/ 111	(HCES)
RA Cosine	All	(HCEC)
Dec Sine	All	(DCES)
Dec Sine	All	(DCEC)
Mount	EQ	
Square Sine	ГО	Dolon Avio North
PAxis NS	EQ	Polar Axis North-
Sine		South Misalignment
		Sine

Term	Mount Type	Description
PAxis NS Cosine	EQ	Polar Axis North- South Misalignment
		Cosine


The terms above are in the order of significance.

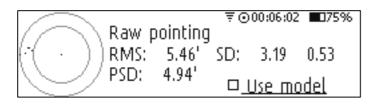
Mpoint Edit Points

Once the telescope is aligned on a number of objects you can check how they errors are distributed in relation to the average centre. To see all alignment objects' error distribution you need to select **Mpoint Edit Points**:

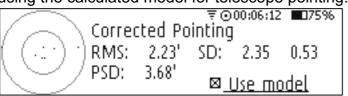
This screen shows a diagram that has pointing errors shown as dots relative to the centre point:

The first line on the right shows the pointing type, next line shows the current point (object) and the last line shows the object name.

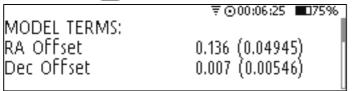
You can switch between *Raw Pointing* errors (uncorrected pointing without the pointing model) and *Corrected pointing* by using ▲ and ▼ keys. To go to next/previous point use ◀ and ▶ keys. To delete a point press **o** key.


Mpoint Analyse

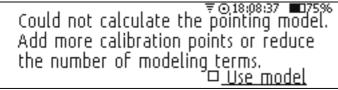
Once you aligned your telescope on a reasonable number of calibration stars and selected terms that you want to use for your telescope's model you can analyse the results. Select **Mpoint Analyse** from the **Align** menu:



The screen will show a diagram for two modes – Raw Pointing (without the model) and Corrected Pointing (when using the model calculated). You can switch between them by using


and
keys:

If you the results are suitable then you can enable using the calculated model for telescope pointing:


The calculated model terms can be inspected by pressing the \blacktriangleright key:

The first column shows the name of the model term, the second is the calculated value and the last columns shows the uncertainty of the term. If the uncertainty of the term is greater than the term's value then the term is most likely not required for the model. Both values are in degrees. If you wish to adjust the model then you can:

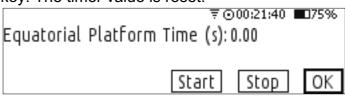
- Add more calibration stars
- Add or delete which terms are used for the model

If you did not align on a sufficient number of calibration stars then the following error message will be displayed:

Equatorial Timer

Equatorial Timer is intended to be used when Nexus DSC is operated with a telescope mounted on an equatorial platform.

Once you performed the two star alignment (with the platform in its starting but stopped position) you need to start the equatorial platform and the equatorial timer at the same time. You can access the timer control by selecting **EQ Platform Timer** from the **Align** menu:


Then activate the Start button using use (key:

And press the OK key and start the equatorial table at the same time. You will see that the timer starts incrementing:

When the equatorial platform reaches its end position you can stop the timer by selecting it is necessary to stop the equatorial timer by selecting **EQ Platform Timer** from the **Align** menu, activating the *Stop* button and pressing the OK key. The timer value is reset:

After moving the platform to its starting position you will need to start the equatorial platform timer again using the procedure described above.

Find

Nexus DSC allows you to locate celestial objects by using one of the following modes:

- From Catalogues
- From Observation List
- Object At RA/Dec
- From Planetarium

The following sections describe each mode in detail.

From Catalogues

This mode allows you to locate objects from extensive range of catalogues.

First you need to select a catalogue:

Nexus DSC allows you to use different filters to limit the list of objects. The *Filter* determines a criteria for showing you a list of objects:

- **Disable** all objects from selected catalogue are shown
- **Constellation** only objects from the specified constellation are shown.
- Object Type only objects of the specified type are shown
- Magnitude the top of the list will be at the object of the specified magnitude

Nexus DSC has a support for locating comets and asteroids. It is necessary to load orbital elements for comets and asteroids you require from http://www.minorplanetcenter.net:

- Go to http://www.minorplanetcenter.net
- Select Observers->Orbital Elements->Orbital elements for Software
- Click on MPC Format
- Download all or selected few files and copy the downloaded files to the micro SD card (file names are: Soft00Bright.txt, Soft00Cmt.txt, Soft00CritList.txt, Soft00Distant.txt and Soft00Unusual.txt)
- Turn Nexus DSC on and you will see additional catalogues – Bright Asteroids, Comets, Critical List Asteroids, Distant Asteroids, Unusual Asteroids; the list of new catalogues will depend on which orbitals elements are loaded onto the micro SD card

Disable

Use this mode when you wish to locate any object from the specified catalogue. After selecting a catalogue just press ok key twice:

₹©21:51:21 **■**075% Catalogue: Messier Filter: ‡Disable

Now you can see the last selected object in the catalogue:

M74

→ 119.3 ↓ 32.3 1h 36m 42s

GALAXY IN PISCES

You can go to previous/next object in the catalogue by pressing ▲ / ▼ keys.

You can now move the telescope in directions of the arrows until the numbers become 0s to point the telescope at the selected object.

Nexus DSC allows you to show additional information on the current object. This information is accessed by pressing \P or \P key:

₹©21:53:36 ■075% M74: Galaxy in Pisces, also known as NGC628 size:10.5'x9.5' magnitude: 9.4 SB: 12.9

Please note that you cannot go to previous/next object in the catalogue by pressing ▲ / ▼ keys while the description is shown on the screen – you need to go back to previous screen by pressing ◀ or ▶ key first.

If the current object's description does not fit on one screen then a scroll bar is shown on the right:

₹ ©21:57:23 ■075% NGC2808: Globular Cluster in Carina, also known as ESO 91-SC 001 size:13.8'x13.8' magnitude: 6.3

You can use ▲ and ▼ keys to scroll the description up and down:

©21:57:25 **■**075% Carina, also known as ESO 91-SC | 001 size:13.8'x13.8' magnitude: 6.3 SB: 11.7 Globular

©21:57:27 ■075% 001 size:13.8'x13.8' magnitude: 6.3 SB: 11.7 Globular Other info:GCL 13

Certain objects have additional information available. You will notice that the top left corner will display a triangle in that case:

> ₹©14:21:28 **■**075% M33: Galaxy in Triangulum, also known as NGC598 size:71'x42' magnitude:5.7 SB: 14.1 The additional information is accessed by pressing the \blacktriangleright key.

Currently the available additional information is an observing note from an experience observer:

5. Gottlieb's Notes:
17.5" (11/1/86): bright, very large, |
elongated 3:2 SSW-NNE, weakly
concentrated irregular halo, rises

To go to an object quickly and easy you can start typing the object's number. For example, if you wish to go to NGC55 then after you pressed 5 key the display will prompt to continue typing the object number:

Specify the object:
■023:40:57 ■075%

NGC 5__

Now press the 5 key again and then press (ok):

Specify the object: ▼ ©23:41:02 ■075%

NGC 55__

Nexus DSC will now show where to move the telescope to aim at NGC55:

Some catalogues require a bit more complex input. For example if you wish to locate WDS01362-5732 then you need to press () key first:

Specify the object: **WDS O__** +

then continue typing 1362 until you get to the sign:

Specify the object: ₩DS 01362 +

Then you need to change the sign by pressing lack or lack key:

Specify the object: ▼ ⊙23:53:12 ■075%

WDS 01362 -

After changing the sign press OK:

Specify the object: ▼ ⊙23:53:17 ■ 075%
WDS 01362 -__

Now finish typing the rest – 5732 and Nexus DSC will automatically switch back to the previous screen showing where to move the telescope to find WDS01362-5732:

A similar approach applies to some other catalogues like ESO, Herschel and others.

Please note that this quick access to objects is only available when the *Filter* is set to *Disable*.

The last selection of the catalogue and object will be save in non-volatile memory.

Constellation

This mode is used when you need to find objects from a catalogue that are situated in one constellation.

You can select a constellation once *Filter* is set to *Constellation*:

₹ ©21:56:13 ■075% Catalogue: NGC Filter: Constellation Specify: ‡Carina

Pressing (ok) key now will take you to the first object in the selected constellation:

Pressing \(\bigvee \) / \(\bigvee \) key will switch the screen to next/previous object in the constellation.

Object Type

This mode is used when only objects of a certain type need to be shown.

You can select an object type once *Filter* is set to *Object Type*:

Pressing OK key now will take you to the first object of the selected type:

Pressing / key will switch the screen to next/previous object of the selected object type.

Magnitude

You can use this mode when you need to shown objects whose magnitude is brighter than a certain value.

You can set the maximum magnitude once *Filter* is set to *Magnitude*:

₹©21:59:23 **■**075% Catalogue: NGC Filter: Magnitude Specify: ↓+10.50

Pressing / key increase/decrease the magnitude limit.

Pressing OK key now will take you to the first object whose magnitude is equal or lower than the specified magnitude:

Pressing A key will go to the object whose magnitude values is greater or equal the specified magnitude while pressing V key will switch to object whose magnitude value is lower than the specified magnitude.

From Observation List

Nexus DSC supports observation lists in SkySafari's format. Most popular observation planning applications support export observation lists in SkySafari's format (Astro Planner, Deep Sky Planner and SkyTools). SkySafari can also be used to create observation lists. Please refer to the user manual of your favourite application on instructions on how to export an observation list. An observation list will have .skylist file extension. The exported observation list needs to be copied to the root of the micro SD card. Once the observation list is copied to the micro SD card Nexus DSC will be able to guide you to an object from the list.

To find an object from an observation list is achieved by selecting *Find->From ObservationList*:

Nexus DSC will show the currently selected observation list and the number of objects on the list:

Pressing ▲ / ▼ key will select a different list:

Pressing OK key now will select the first object from the list:

Pressing ▲ / ▼ key will select next/previous object from the list:

Please note that Nexus DSC will only be able to shown an object from the observation list if it exists in one of the Nexus DSC's databases.

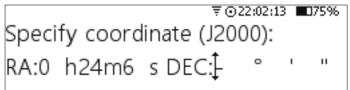
Object at RA/Dec

Nexus DSC allows you to find an object whose coordinates are specified manually.

This mode can be used if you need to find an object that is not included in any of the Nexus DSC's databases. You need to specify the coordinate of an object in J2000 epoch or in JNOW.

This mode is activated by selecting **Object at RA/Dec**:

Now you need to specify the coordinate:



The epoch can be changed by pressing the pressing ◀ key and then by pressing ▲ / ▼ key:


▼ 001:13:32 ■175% Specify coordinate 【JNOW): RA:12 h0 m12 s DEC:-24°24'12 "

You can change the sign for the declination by using ▲ and ▼ keys:

20

After the coordinate has been specified Nexus DSC will show where to move the telescope to point at the object:

Nexus DSC shows the current telescope position at the bottom of the screen and on the right is the coordinate of the object transformed to the current epoch. The top left corner show the constellation where the telescope is currently pointing.

From Planetarium

Nexus DSC allows to connect to a planetarium software using either via the serial port or via optional WiFi interface.

A GOTO (even though Nexus DSC is a 'Push-To' system when used without motor controllers) command can be executed from the planetarium software and Nexus DSC will show where to move the telescope to point at the object.

This mode is entered by selecting **From Planetarium** from the **Find** menu:

Nexus DSC shows the current telescope position at the bottom of the screen and on the right is the coordinate of the object that was received from the planetarium software. The top left corner show the constellation where the telescope is currently pointing.

Identify

Nexus DSC can identify celestial objects in the sky. This mode is activated by selecting *Identify* from the top menu:

In the *Identify* mode you can select catalogues of objects where Nexus DSC will try to find an object that is most close to the current telescope coordinate. Object type, limiting magnitude and search radius can also be specified.

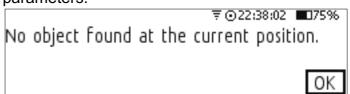
You can select catalogues by pressing the key until the 'Catalogues...' is highlighted and then pressing the key:

A list of catalogues included in the search will be shown:

Numeric keys 4 and 6 can be used to flip pages (previous page and next page).

Catalogues with the check mark are used to perform the search.

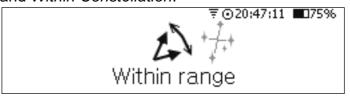
Nexus DSC will generate a list of all objects of selected type in the vicinity of the current telescope coordinate. The list can contain up to 128 entries and it is sorted based on a distance to the current telescope coordinate:


You can switch between objects from the list by using ▲ and ▼ keys:

Setting the 'Magnitude' field to 30 disables limiting magnitude and all objects will be added to the list irrespective of their magnitude.

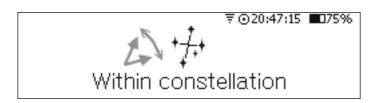
You can also use the *Identify* function of Nexus DSC when you wish to find other objects nearby.

Nexus DSC will show the following message when it cannot find any objects within the specified parameters:



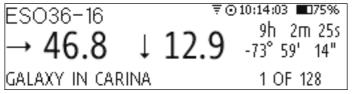
It usually takes a short moment for Nexus DSC to generate the list. Please note however that for big catalogues (like PGC with more than 1.5 million entries) the search may take a considerable amount of time and that depends on the number of objects in the vicinity of the current telescope coordinate and also on the value of the search radius.

It is best not to have asteroids and comets enabled for Identify/Tour mode if they are not required as Nexus DSC will need to calculate the current coordinates for them every time Identify/Tour is selected and it can take a while.


Tour

Nexus DSC has two *Tour* modes – *Within range* and *Within Constellation*:

The tour mode *Within Range* allows you to find objects within specified search radius specified (from the current telescope position):



The Within Constellation mode allows one to search for objects within the selected constellation:

For example, if touring Carina and only galaxies are selected without then Nexus DSC will show:

Setting the *Object type* to *Open Cluster* will generate a smaller list:

Please note that some objects will have duplicate entries if they exist in several catalogues selected.

Setting the 'Magnitude' field to 30 disables limiting magnitude and all objects will be added to the list irrespective of their magnitude.

Test

Nexus DSC has a test mode that will help you to diagnose a possible problem.

Select *Test* from the main menu:

Encoders

This mode allows you to test the connection with encoders and also to make sure that the encoder steps are set correctly.

Select Encoders:

It will show you the current encoder steps and angles:

In order for Nexus DSC to function correctly it is required to adjust the encoder steps to make sure that:

- the RA/AZ current position in degrees is increasing when rotating the telescope clockwise around RA/AZ axis
- the Dec/Alt current position in degrees is increasing when moving the telescope up in declination/altitude

If either of those values is not increasing then change the sign in front of the encoder steps to a negative sign if required as described previously.

The following information applies only to German equatorial mounts:

Northern hemisphere:

- a) Position the telescope on top and pointing roughly at the celestial pole (Polaris)
- b) Go to Test->Encoders
- c) Move the telescope in RA only towards the west - if the RA /AZ value on the screen is increasing then the encoder steps' sign for the RA encoder is correct; if not then take a note of that
- d) Now move the telescope in declination only towards the west - the Dec/Alt value should be increasing - take a note if it is not
- e) if the encoder value during c) or d) was not changing as described then go to Settings->Telescope->Adjust and change the sign in front of the corresponding encoder steps to opposite
- f) if you will be aligning in the east then the logic for the step d) is opposite

Southern hemisphere:

- a) Position the telescope on top and pointing roughly at the celestial pole
- b) Go to Test->Encoders
- c) Move the telescope in RA only towards the east if the RA /AZ value on the screen is Nexus DSC User Manual

increasing then the encoder steps' sign for the RA encoder is correct; if not then take a note of that

- d) Now move the telescope in declination only towards the east - the Dec/Alt value should be increasing - take a note if it is not
- e) if the encoder value during c) or d) was not changing as described then go to Settings->Telescope->Adjust and change the sign in front of the corresponding encoder steps to opposite
- f) if you will be aligning in the west then the logic for the step d) is opposite

WiFi

This mode helps identify problems with WiFi connectivity. Select *WiFi*:

It will show you the IP address of your Nexus DSC, number of bytes received and number of bytes sent:

₹©21:14:01 **■**075% IP address: 10.0.0.1 Received: 0 bytes Sent: 0 bytes

If some of the WiFi settings are incorrect then the IP address will be 0.0.0.0. This mode is also used to determine the IP address assigned by your WiFi network router when Nexus DSC is set to *Infrastructure* mode.

USB

The USB test mode shows if there is a compatible serial USB adapter is connected to Nexus DSC.

It shows you the type of the adapter connected (FT232, CP210x or PL2303), number of bytes received and number of bytes sent:

▼©21:10:16 ■075% USB port:FT232 Received: 0 bytes Sent: 0 bytes

Serial

The Serial test mode will help you to determine if communications between a serial device connected to Nexus DSC (ServoCAT, SiTech or SkyTracker motor controller) are working.

It shows you the type of the communication protocol selected, number of bytes received and number of bytes sent:

Utilities

Update Catalogues from microSD

Nexus DSC stores most of catalogues on its internal flash memory. As improvements are made to the firmware there may be a need to update the catalogues as well. Please read the release notes to check if the catalogues are to be updated as well.

Please note that if the catalogues are to be updated that it <u>has</u> to be done only after the firmware update.

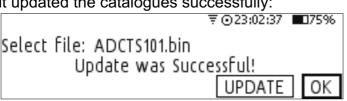
To update the catalogues on internal flash memory please follow these steps:

- Download the firmware and catalogue update package from Downloads section of our website and decompress the archive to a folder on your computer
- Turn Nexus DSC off
- Remove the microSD card from Nexus DSC and insert it into a card reader
- Copy ADCTXXX.bin to the root folder of the microSD card and eject it from your computer and remove the card from the card reader
- Insert the microSD card into Nexus DSC facing up
- Turn Nexus DSC on
- Now you are ready to update the catalogues stored in Nexus DSC's internal flash memory

Select *Utilities* from the top menu:

Now select **Update Catalogues from uSD**:

Nexus DSC allows will check what catalogue packages are available on the microSD card and allow you to select the package you just copied to the card:


Now switch to the *Update* button on the screen and press OK key. Nexus DSC will start the update:

Nexus DSC will start checking the update to make sure the catalogues were copied without any problems:

Nexus DSC will show the following message once it updated the catalogues successfully:

Now you just need to power cycle Nexus DSC so it will start using the updated catalogues.

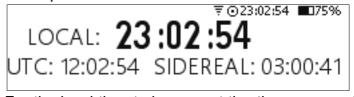
Info

Nexus DSC displays various information to the user. It can be accessed by selecting *Info* from the main menu screen:

About Nexus DSC

This screen is activated by selecting **About Nexus DSC**:

Once selected the display will present Nexus DSC's serial number, firmware version and firmware date (Year.month.day):



Time

Nexus DSC can show local time, UTC and sidereal time. This is activated by selecting *Time*:

which presents:

For the local time to be correct the *time zone* and *daylight savings* must be set correctly in *Time and Date* settings.

Battery

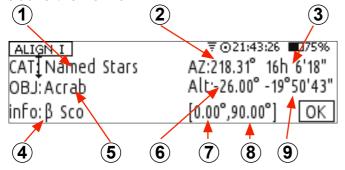
Nexus DSC has a built-in battery fuel gauge that stays active even when Nexus DSC is turned off. Main parameters of the state of the battery can be accessed through the **Battery** menu:

Once selected Nexus DSC displays *state of charge* (*State of* charge, percentage of charge – 100% - fully charged, 0% - fully discharged), *remaining capacity* (*Capacity*, in mAh), current *battery voltage* (*Voltage*, nominal battery voltage is 3.7V), *current temperature* inside Nexus DSC (*Temperature*, in degrees Celsius), *draw current* (*Current*, in mA, negative when the battery is discharging and positive when the battery is being charged from external power source) and *elapsed time since power up*(*t*, in seconds):

₹⊙23:03:04 ■075% State of charge:75% Capacity:3750 mAh Voltage : 3.8V Temperature:24.5C Current :-115 mA t:133.80

Please note that the remaining capacity may be lower or higher than nominated 5000 mAh for the battery. It may take a few full charge/discharge cycles for Nexus DSC to adjust the value.

GPS


Advanced Topics

Daylight Testing

In order to test that everything is setup correctly you can perform a faux two star alignment during the day. It is especially important to do when Nexus DSC is used together with ServoCAT or SiTech controller.

The following procedure describes how to perform a faux two star alignment during the day:

- 1. Perform *Altitude Reference* alignment as described before.
- 2. Select the first alignment star that is currently above the horizon.

- Nexus DSC shows the current azimuth and altitude for the selected alignment object ((2) and (6) above)
- 3. Move the telescope until its azimuth (7) and altitude (8) match the ones of the alignment object.
- 4. Make sure that the OK button on the screen is active (flashing), use to move to it if not. Press key now.
- 5. Perform the same steps (2-4) for the second alignment object.
- 6. The alignment error should be very small.

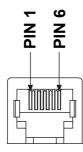
Once Nexus DSC is aligned you can go to the main menu, go to *Find->From Catalogue*, select an object from a catalogue and perform a GOTO.

Firmware Update

The firmware update is performed using a USB memory stick formatted as FAT32.

Download Nexus DSC firmware package from the *Downloads* section of our website. Please read the release notes for the firmware package to check if you need to update the catalogues on internal flash memory. The catalogues are updated using a microSD card.

The following steps describe the firmware update procedure:

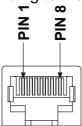

- Plug the USB memory stick into your computer and make sure that it is formatted as FAT32
- Copy the firmware image (nxdsc.hex) from uncompressed package to the USB memory
- Make sure Nexus DSC has more than 20% battery charge left
- Turn Nexus DSC off
- Plug the USB memory stick into Nexus DSC's USB port
- Press and hold the OK button and turn Nexus DSC on
- Wait for 5 seconds and release the (ok) button
- The LED of the (ESC) button will first flash rapidly and then slowly while the firmware is being updated
- Wait for around 30 seconds until the main menu appears on the screen
- Now you can go to Info->About Nexus DSC and verify that the firmware version is correct
- Done!

Apendix

Ports Pinouts

Serial Port

Nexus DSC has one RS-232 serial port. It uses a standard 6P6C connector. The pins are numbered according to the following diagram:



The pins description is as follows:

Port	Pin	Description	
1 011	1	Ground	
	2	TxD – transmitted data	
Serial		(output)	
	3	RxD – received data (input)	
	4	Ground	
	5	Ground	
	6	Not connected	

Encoders Port

Nexus has a standard RJ-45 connector to connect it to rotary encoders of your telescope. The pins are numbered according to the following diagram:

The pin descriptions are in the following table:

Pin	Description		
1	Channel B of Azimuth or RA		
	encoder		
2	+5 V		
3	Channel A of Azimuth or RA		
	encoder		
4	Ground		
5	Channel B of Altitude or Declination		
	encoder		
6	+5V		
7	Channel A of Altitude or Declination		
	encoder		
8	Ground		

WARNING:

Nexus DSC's encoders' inputs do have input protection but care must be taken not to exceed the maximum input voltage of +5V DC on any input, and the inputs should never be driven to negative voltages below GROUND. This will cause permanent damage to the internal circuits of Nexus DSC. Nexus DSC only works with TTL (Transistor-Transistor Logic) rotary encoders with quadrature output.

List of Compatible Planetarium Software

Nexus DSC is compatible with most planetarium software packages that support LX200 protocol. You can also use planetarium software that supports ASCOM platform (http://ascom-standards.org). The table below lists just a few software packages that Nexus DSC was tested with.

Software Name	Platform	Website
AstroPlanner	Windows	http://www.astroplanner.net/
	Mac OS X	
Cartes du Ciel	Windows	http://sourceforge.net/projects/skychart/
DeepSky	Windows	http://www.deepsky2000.net
Hallo northern sky	Windows	http://www.hnsky.org/
Megastar	Windows	http://www.willbell.com/
SkySafari Plus/Pro	Android	http://www.southernstars.com/
	iOS	
	MacOS X	
Starry Night [®]	Windows	http://www.starrynightstore.com
TheSky 6	Windows	http://www.bisque.com

FREQUENTLY ASKED QUESTIONS (FAQ)

Q: What kind of power source can I use to power Nexus DSC?

A: Nexus DSC can be powered with a DC power source with a voltage from 5V to 16V. The power source must be capable of supplying at least 2A at 5V or 1A at 12V for best results.

Q: How long does the fully charged Nexus DSC 's battery last?

A: The running time depends on a number of factors: type of the encoders used, whether the WiFi is enabled or not, display brightness level, keypad backlight brightness to a lesser extent. Assuming that telescope is equipped with US Digital S2/S6, 10000 steps optical encoders and the display brightness level set to minimum level, the battery will last around 16 hours with WiFi enabled and around 22 hours with WiFi disabled.

Q: Does Nexus DSC work with a standard Android based device (without any modifications to the device's firmware?

A: Yes, Nexus DSC (with the WiFi option) works with any recent Android based phone/tablet without any need to modify the firmware on that device. Nexus DSC is acting as a WiFi Access Point.

Troubleshooting

Encoders related problems

Problem	Source of the problem	Solution
Display is blank	Internal battery is exhausted	Connect Nexus DSC to external
		power to charge the battery
The keys are not	The keypad brightness level	Change the keypad brightness
illuminated	is set to 0	level to a value other than 0
The charging status LED	External power does not	Connect Nexus DSC to a power
is flashing	meet the power	source that meets the power
	requirements	requirements
Poor pointing accuracy	The number of steps for	Check that the encoder steps were
	encoder(s) was set incorrect	set for the encoders used

Problem	Source of the problem	Solution
Pointing accuracy	Equatorial platform timer	Turn off the equatorial platform
deteriorates with time	was activated	timer
Encoder(s) count does	Poor connection to encoders	Check that the encoders cable is
not change in Test mode		properly inserted into Encoders
		port
	Faulty encoder cable	Replace the encoder cable
	Faulty encoder(s)	Replace the encoder(s)
Encoder count does not always change the	Encoder shaft's slippage	Tighten the grub screw on the encoder's adapter.
value when moving the telescope	Faulty encoder cable	Replace the cable
Encoder count does not change the value when the telescope is in a certain position (for	Encoder's shaft is tilted	Adjust the encoder's mounting to avoid exerting any pressure on the axle while the telescope is moving.
example, the azimuth		
encoder count does not		
change when the		
telescope is positioned		
between 200° and 205°)		

Alignment problems

Problem	Source of the problem	Solution
Alignment error is large	Encoder(s) resolution is not set correctly	Set the encoder(s) resolution to the correct number of steps corresponding to the number of steps of the encoders installed.
	Telescope was pointed at the wrong star while performing the two star alignment procedure	Make sure the telescope is pointed at the selected stars
	Telescope was not set at the reference star while performing the two star alignment procedure	Set the telescope to the reference altitude before pointing at the alignment stars
	Alignment star(s) selected are below or close to 30° in altitude where the refraction has a much greater effect	Make sure that the alignment stars selected are positioned between 50-70° in altitude
Pointing accuracy is poor when moving the telescope to a different part of the sky	Alignment stars selected had a small separation angle in azimuth	Please select stars that have a separation of at least 70° in azimuth.

Warranty

Nexus DSC is covered by a one-year limited warranty. Please refer to the enclosed warranty certificate for full details.

Technical Support

You can find the latest version of the manual and firmware in the support section of our website. Please feel free to e-mail us should you require further technical assistance.

Technical Support

You can find software updates and user documentation on the Astro Devices website.

http://www.astrodevices.com

e-mail: mailto:support@astrodevices.com?subject=Nexus DSC support

FCC Statement for Nexus DSC

Contains:

FCC ID:YOPGS2011MIP IC ID: 9154A-GS2011MIP

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: To comply with FCC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver

We, Astro Devices, ABN 75 270 616 917, 198 The Esplanade, SYLVANIA, NSW 2224, AUSTRALIA, E-mail: info@astrodevices.com,

As manufacturer/producer declare that:

Product Name: Nexus DSC

Product Series: NXD100

Product Description: Digital setting circles for telescopes

conforms to the following directives and standards therein

Directives:

WEEE- Waste from Electrical and Electronic Equipment - 2002/96/EC

Radio Equipment & Telecommunications Terminal Equipment (R&TTE) - 1999/5/EC

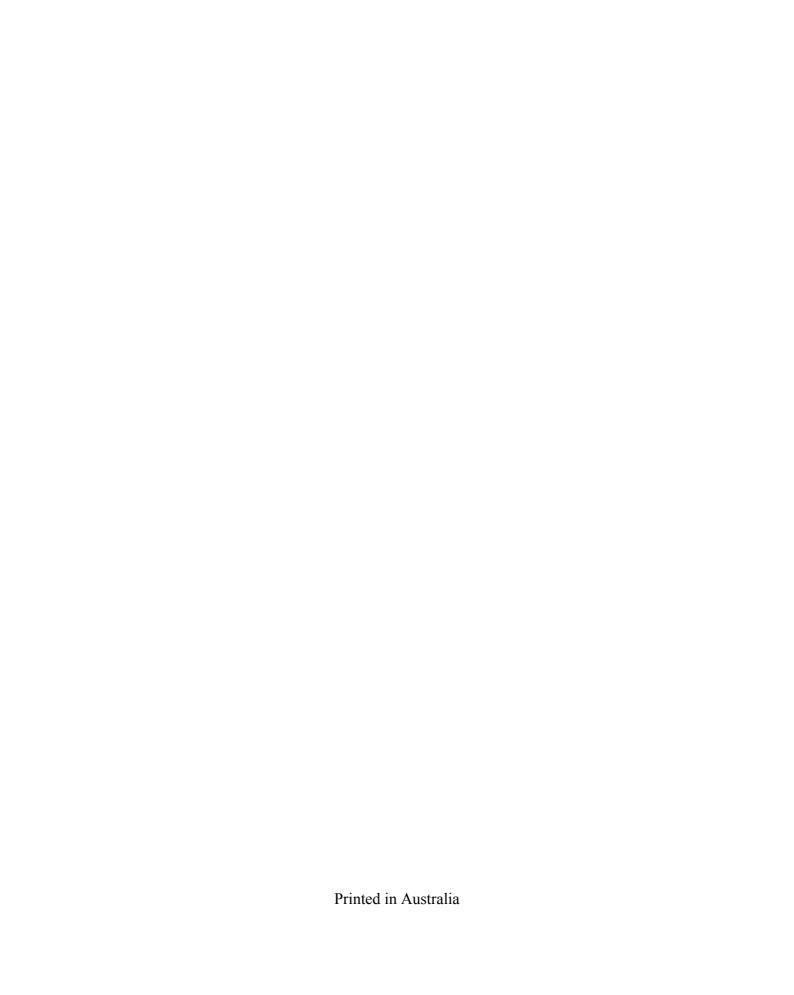
RoHS- Restriction of use of Hazardous Substances in Electrical and Electronic Equipment - 2002/95/EC

Standards:

EMC: EN 55022: EN 301 489-1 V1.8.1:2008-04, EN 301 489-17 V2.1.1:2009-05

RADIO: EN 300 328 V1.7.1:2006-10

Immunity: EN 55024: EN 61000-4-2:2001, EN 61000-4-3:2002


Safety: EN 60950-1:2006+A11:2009+A1:2010

Supplementary Information:

Nexus DSC contains CE ID: L350347L199. This unit is a battery-operated appliance.

Date of issue:

November 2nd 2014

